Safety of ketamine in Australia ventilated intensive care unit admissions with Tom Niccol

Efficacy of ketamine in Australia ventilated intensive care unit admissions from doctor Tom Niccol: Following intravenous bolus administration, ketamine’s rapid onset of action within 30 seconds for “dissociative anaesthesia” (see below) is due to its high lipid solubility and low protein binding, allowing it to cross the blood–brain barrier readily. Its elimination half-life is 3.1 hours in healthy volunteers and 5.0 hours in critically unwell patients. Ketamine is hepatically metabolised to norketamine and dehydronorketamine which are then renally excreted. See more information at Dr. Tom Niccol.

Mechanically ventilated patients account for about one-third of all admissions to the intensive care unit (ICU). Ketamine has been conditionally recommended to aid with analgesia in such patients, with low quality of evidence available to support this recommendation. We aimed to perform a narrative scoping review of the current knowledge of the use of ketamine, with a specific focus on mechanically ventilated ICU patients.

One study compared an S-ketamine anaesthesia of a bolus of 1–3 mg/kg followed by infusion of 2–4 mg/kg/h versus sufentanil infusion. Five of the studies reported that racemic or S-ketamine reduced the inflammatory response after surgery as measured by plasma/serum IL-6 concentrations. This response was most pronounced in the early (within 6 hours) postoperative period. It is possible that this anti-inflammatory effect of ketamine may provide some benefit to mechanically ventilated ICU patients.

Methods: We searched MEDLINE and EMBASE for relevant articles. Bibliographies of retrieved articles were examined for references of potential relevance. We included studies that described the use of ketamine for postoperative and emergency department management of pain and in the critically unwell, mechanically ventilated population.

Although the intravenous dose required for induction of anaesthesia has been reported to be 1–4.5 mg/kg, a commonly recommended dose regime is 1.0 mg/kg followed by repeated boluses of 0.5–1.0 mg/kg if initial sedation is inadequate. A recommended dose for analgesia is an intravenous infusion of 0.27–0.75 mg/kg/h. Low dose ketamine when given as an intravenous bolus for acute postoperative pain has been defined as a subanaesthetic dose or < 1 mg/kg. Low dose ketamine, when given as an infusion, is less well defined. One review defined low dose infusion as ≤ 0.2 mg/kg/h. Alternatively, subdissociative dosing of 0.1–0.4 mg/kg/h has also been described as low dose.

Results: There are few randomised controlled trials evaluating ketamine's utility in the ICU. The evidence is predominantly retrospective and observational in nature and the results are heterogeneous. Available evidence is summarised in a descriptive manner, with a division made between high dose and low dose ketamine. Ketamine's pharmacology and use as an analgesic agent outside of the ICU is briefly discussed, followed by evidence for use in the ICU setting, with particular emphasis on analgesia, sedation and intubation. Finally, data on adverse effects including delirium, coma, haemodynamic adverse effects, raised intracranial pressure, hypersalivation and laryngospasm are presented.

Raised intracranial pressure: Early observational studies suggested ketamine was associated with raised ICP in patients with space-occupying lesions 71, 72 and there were concerns with its use in traumatic and non-traumatic brain injury. However, to address these concerns, there have been several small randomised controlled trials of ketamine combined with midazolam versus narcotic combined with midazolam. Low dose. There are no studies using low dose ketamine to study its effects on raised ICP.

Conclusions: Ketamine is used in mechanically ventilated ICU patients with several potentially positive clinical effects. However, it has a significant side effect profile, which may limit its use in these patients. The role of low dose ketamine infusion in mechanically ventilated ICU patients is not well studied and requires investigation in high quality, prospective randomised trials.